

4.5 MILLION TPY QESHM ISLAND FREE ZONE

EDC-1547-00P QESHM STEEL PLANT LOCATION										QESHM STEEL PLANT PLANT LOCATION				
	 Rev-3 Rev-2 Rev-1 Rev Description					1CF				EDC DESIGN DATA				
						PAKPAS ENGINEERING AND CONSTRUCTION LTD				rean cosmionimomed				
			Check	Name	Scack		$\begin{array}{c\|c} \hline \text { Job No } & \text { Page } \\ \hline 1547-00 \mathrm{P} & \mathbf{1 / 1} \end{array}$		Page Sym	Nit NoC	Cat ${ }^{\text {T }}$	Tpe+Forma	Serial No	Rev
	2905/2017	O.SONGUR	HZabun	s.KADAN	NS				DWG		A	UD	0100.001	6

Political Map of the World, April 2006

EDC-1547-00P QESHM STEEL PLANT LOCATION						ESHM STEEL Co شُركت نوب آهن فثّم				QESHM STEEL PLANT PLANT LOCATION				
	 Rev-3 Rev-2 Rev-1 Rev Description					$1{ }^{\circ}$ Environmental Technologies, Transportation \& Energy Consulting				EDC DESIGN DATA				
						PAKPAS ENGINEERING AND CONSTRUCTION LTD								
			Date	Name	Check									
	Date	Drawn	Check	Appr.	Scale		Job No	Page	Symbol	Unit	Cat	Type+Format	Serial No	Rev
	29/05/2017	O.SONGUR	h.ZABUN	S.KADAN	N/S		1547-00P	1/1	DWG	00	A	UD	0100.001	6

UTM COORDINATES

PARS SAMANGAN SOUTHWEST MINERAL CO.

Q
ESHM STEEL Co
شُركت ذوب آهن قشّم
KERMAN PROVINCE QESHM ISLAND

SEE PAGE-16

EDC-1547-00P QESHM STEEL PLANT LOCATION										Qeshm steel plant PLANT LOCATION				
						1بF				EDC DESIGN DATA				
						PAKPAS ENGINEERING AND CONSTRUCTION LTD				man				
			Date	Name	Check									
	Date	Drawn	Check	Appr.	Scale		Job No Page $1547-00 \mathrm{P}$ $1 / 1$		Symbo	Unit No Cat Type FFormat			Serial No	Rev
	290552017	O.SONGUR	hzabun	s.KADAN	NS				00	A	UD	0100.003	6	

HORMOZ, THE ISLAND OF COLOURS IN IRAN

A couple of miles out of town, we find the first surprise. It's the beach where the largest soil carpets in the world are often displayed. This fabulous mythological bird was created for a festival, thanks to the workshop in Hormuz of the artist Ahmad Nadalian.

QESHM STEEL PLANT PLANT LOCATION

EDC DESIGN DATA

EDC-1547-00P QESHM STEEL PLANT LOCATION

Rev-3						
Rev-2						
Rev-1						
			Drawn	Check	Appr.	Scale
	$29 / 0$	2017	O.SONGUR	H.ZABUN	s.fadan	N/S

REAN COMMODMン

	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
Without PAKRAAS's wiriten conosent.	1547-00P	1/1	DWG	00	A	UD	0100.005	5

INTERNATIONAL GEOGRAPHICAL COORDINATE SYSTEMS

A geographic coordinate system is a coordinate system used in geography that enables every location on Earth to be specified by a set of numbers, letters or symbols.[n 1] The coordinates are often chosen such that one of the numbers represents a vertical position, and two or three of the numbers represent a horizontal position. A common choice of coordinates is latitude, longitude and elevation.[1]

The "latitude" (abbreviation: Lat., φ, or phi) of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth.[n 3] Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the equator and to each other. The north pole is $90^{\circ} \mathrm{N}$; the south pole is $90^{\circ} \mathrm{S}$. The 0° parallel of latitude is designated the equator, the fundamental plane of all geographic coordinate systems. The equator divides the globe into Northern and Southern Hemispheres.
Line across the Earth 0°
Prime Meridian
The "longitude" (abbreviation: Long., λ, or lambda) of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the north and south poles. The meridian of the British Royal Observatory in Greenwich, in south-east London, England, is the international prime meridian, although some organizations—such as the French Institut Géographique National-continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both $180^{\circ} \mathrm{W}$ and $180^{\circ} \mathrm{E}$. This is not to be conflated with the International Date Line, which diverges from it in several places for political reasons, including between far eastern Russia and the far western Aleutian Islands.
The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The grid formed by lines of latitude and longitude is known as a "graticule". [6] The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana.

UNIVERSAL TRANSVERSE MERCATOR SYSTEM-UTM

The Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS) coordinate systems both use a metric-based cartesian grid laid out on a conformally projected surface to locate positions on the surface of the Earth. The UTM system is not a single map projection but a series of sixty, each covering 6-degree bands of longitude. The UPS system is used for the polar regions, which are not covered by the UTM system.

The UTM system divides the Earth between $80^{\circ} \mathrm{S}$ and $84^{\circ} \mathrm{N}$ latitude into 60 zones, each 6° of longitude in width. Zone 1 covers longitude 180° to $174^{\circ} \mathrm{W}$; zone numbering increases eastward to zone 60, which covers longitude $174^{\circ} \mathrm{E}$ to 180°.
Each of the 60 zones uses a transverse Mercator projection that can map a region of large north-south extent with low distortion. By using narrow zones of 6° of longitude (up to 800 km) in width, and reducing the scale factor along the central meridian to 0.9996 (a reduction of $1: 2500$), the amount of distortion is held below 1 part in 1,000 inside each zone. Distortion of scale increases to 1.0010 at the zone boundaries along the equator.
In each zone the scale factor of the central meridian reduces the diameter of the transverse cylinder to produce a secant projection with two standard lines, or lines of true scale, about 180 km on each side of, and about parallel to, the central meridian (Arc cos $0.9996=$ 1.62° at the Equator). The scale is less than 1 inside the standard lines and greater than 1 outside them, but the overall distortion is minimized.
http://earth-info.nga.mil/GandG/coordsys/mmr201.pdf http://www.latlong.net/place/university-of-tehran-tehran-iran-4466.html

The Universal Transverse Mercator (UTM) conformal projection uses a 2-dimensional Cartesian coordinate system to give locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, i.e. it is used to identify locations on the Earth independently of vertical position. However, it differs from that method in several respects.
The UTM system is not a single map projection. The system instead divides the Earth into sixty zones, each being a six-degree band of longitude, and uses a secant transverse Mercator projection in each zone.

UNIVERSAL TRANSVERSE MERCATOR SYSTEM-UTM

UNIVERSAL TRANSVERSE MERCATOR SYSTEM-UTM

Notation

The combination of a zone and a latitude band defines a grid zone. The zone is always written first, followed by the latitude band. For example (see image, top right), a position in Toronto, Canada, would find itself in zone 17 and latitude band "T", thus the full grid zone reference is " $17 \mathrm{~T}^{\prime}$ ". The grid zones serve to delineate irregular UTM zone boundaries. They also are an integral part of the military grid reference system. A note of caution: A method also is used that simply adds N or S following the zone number to indicate North or South hemisphere (the easting and northing coordinates along with the zone number supplying everything necessary to geolocate a position except which hemisphere). However, this method has caused some confusion since, for instance, "50S" can mean southern hemisphere but also grid zone "50S" in the northern hemisphere.[6] There are many possible ways to disambiguate between the two methods, two of which are demonstrated later in this article.

A Quick Guide to Using UTM Coordinates

Standing at the center of the marker shown on the map below, a GPS unit set to display position in UTM/UPS format, would report a location of:
Let's look at where the various parts of the UTM position come from on the map.

Location 10 S 0706832 UTM 4344683

The label,, reads "seven hundred and six thousand meters East." The label,, is an abbreviation for,The two grid lines are 1000 meters apart. The horizontal grid lines are labeled in a similar manner.
The $\mathbf{1 0 S}$ is the Grid Zone Designation you are in. The Grid Zone is necessary to make the coordinates unique over the entire globe.
The top set of numbers, 706832, represent a measurement of East-West position, within the Grid Zone, in meters. It's called an Easting. Using a map with a 1000 m grid, the first digits are come from the label for the grid line to the west of the position. The last 3 digits are the distance in meters measured from the western grid line.
The bottom set of numbers, 4344683, represent a measurement of North-South position, within the Grid Zone, in meters. It's called a Northing. Using a map with a 1000 m grid, the first digits are come from the label for the grid line to the south of the position. The last 3 digits are the distance in meters measured from the southern grid line.
http://awsm-tools.com/geo/utm-to-geographic
http://herpnet.org/herpnet/gbif/World UTM Map.pdf

	A	B	C	D
X	402050	405980	405980	402050
Y	3196754	3196754	3195237	3195237

KERMAN-SIRJAN-DASH-E ZAR IRON ORE DEPOSIT
http://www.lib.utexas.edu/maps/middle east and asia/iran pol01.pdf

https://www.google.com/maps/dir///@28.7059568.56.2382396.7z?hl=en-US

EDC-1547-00P QESHM STEEL PLANT LOCATION						ESHM STEEL CO 				QESHM STEEL PLANT PLANT LOCATION				
	Rev-3					1ب̣ ${ }^{\circ}$ Environmental Technologies, Transportation \& Energy Consulting				EDC DESIGN DATA				
		Description	Date	Name	Check	PAKPAS ENGINEERING AND CONSTRUCTION LTD				REANCOMMOBitromce				
	Date	Drawn	Check	Appr.	Scale		$\begin{array}{\|c\|} \hline \text { Job No } \\ \hline 1547-00 \mathrm{~F} \\ \hline \end{array}$	Page	Symbo	Unit No Cat		Type+Format	Serial No	Rev
	29/05/2017	O.SONGUR	h.ZABUN	S.KADAN	N/S					00		UD	0100.0010	6

KERMAN-SIRJAN-DASH-E ZAR IRON ORE DEPOSIT

\section*{40R

 | PROVINCE: | KERMAN |
| :--- | :---: |
| COUNTY: | SIRJAN |
| DISTRICT: | DASH-E-ZAR |}

By virtue of deed of compromise No. 139223453012000003 , dated 24/12/2013, registered by notary public No. 216 of Sirjan, the utilization permit for Chahzar Iron Ore Mine was transferred to the name of Pars Samangan Southwest Mineral Co., located at No. 1, Pirouzi Blvd., Sirjan, Iran. Meanwhile, the named company has presented amount of IRR. 100,000,000 via bank guarantee No. 62629, dated 22/01/2014, Bank Melli, Sirjan Bazaar Branch, for good performance commitment.

Signed by head of Industry, Mine and Commerce Organization of Kerman Province

http://www.latlong.net/place/tehran-iran-4703.html

KERMAN-SIRJAN-DASH-E ZAR IRON ORE DEPOSIT-ONLINE GEOGRAPHIC TOOLS

http://www.latlong.net/

KERMAN		SHIRAZ	
Country	Iran	Country	Iran
Latitude	30.283937	Latitude	29.591768
Longitude	57.083363	Longitude	52.583698
DMS Lat	$30^{\circ} 17^{\prime} 2.1732^{\prime \prime} \mathrm{N}$	DMS Lat	$29^{\circ} 35^{\prime} 30.3648{ }^{\prime \prime} \mathrm{N}$
DMS Long	$57^{\circ} 5^{\prime} 0.1068{ }^{\prime \prime} \mathrm{E}$	DMS Long	$52^{\circ} 35^{\prime} 1.3128^{\prime \prime} \mathrm{E}$
UTM Easting	508,017.18	UTM Easting	653,375.37
UTM Northing	3,350,251.49	UTM Northing	3,274,598.25
UTM Zone	40R	UTM Zone	39R
Elevation (m)	1,763 m	Elevation (m)	1,509 m
Elevation (f)	5,784 feet	Elevation (f)	4,951 feet
Category	Cities	Category	Streets
Country Code	IR	Country Code	IR
Zoom Level	10	Zoom Level	10

KERMAN-SIRJAN-DASH-E ZAR IRON ORE DEPOSIT-ONLINE GEOGRAPHIC TOOLS

https://mappingsupport.com/p/gmap4.php?utm=14N.460555.4257618\&tilt=off\&z=5\&t=t1

EDC-1547-00P QESHM STEEL PLANT LOCATION						(2eshm steel co شُركت ذوب آنه شثم				QESHM STEEL PLANT PLANT LOCATION				
	Rev-3					\qquad				EDC DESIGN DATA				
	Rev-1 Rev De	rription	Date	Name	Check	- PAKPAS ENGINEERING				reancommonitromce				
	Date	Drawn	Check	Appr.	Scale		Job No	Page	Symbol	it N		Type+Format	Serial №	Rev
	29/05/2017	O.SONGUR	H.ZABUN	S.KADAN	N/S		1547-00P	1/1	DWG	00	A	UD	0100.0014	6

QESHM STEEL FATORY LOCATION-QESHM ISLAND FREE ZONE

https://mappingsupport.com/p/gmap4.php?utm=14N,460555.4257618\&tilt=off\&z=5\&t=t1

QESHM STEEL FATORY LOCATION-QESHM ISLAND FREE ZONE

40R

plant general location
http://www.geshimisteel.com/Library/QESHM.bmp
(a) plant layout
http://www.qeshimisteel.com/Library/LAYOUT.dwg

-

PLANT FLOW DIAGRAM
http://www.qeshimisteel.com/Library/FLOW.pdf

\qquad | 400389 | 391458 | 390948 | 400034 |
| :--- | :--- | :--- | :--- | | Y | 2979653 | 2974791 | 2976423 | 2981269 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EDC-1547-00P QESHM STEEL PLANT LOCATION										Qeshm steel plant PLANT LOCATION				
						1ب̨				EDC DESIGN DATA				
		Descripion				PAKPAS ENGINEERING AND CONSTRUCTION LTD				reancomminimoma				
			Date	Name	Check					rean commobitr omce				
		Drawn	Check	Appr.	Scale				Symbol	Unit No	Cat	+Form	Serial No	Rev
	290512017	O.SONGUR	H.ZABUN	s.KADAN	NS		1547-00P	1/1	DWG	00	A	UD	0100.0016	6

